State of Washington

Office of the Administrator for the Courts

JOINT JIS JUVENILE AND CORRECTIONS

ADVISORY COMMITTEE and WORK GROUP

MEETING MINUTES

September 9, 1999

Present:	Larry Barker, Sandy Ervin, Susan Fraser, John Gray, Judy Higgins, Rena Hollis, Mel Jewell, Toni Kirschenmann, Jo Ann Moore, Bill Morgan, Kathy Phillips (King), Jim Phoenix, Cathy Snow (King), Fred Thompson, Frank Trujillo, Sue Trujillo, Deborah Yonaka, Dave Yount, Norma BryceAlan Erickson, Maury Galbraith, Eric Kruger

Absent:	Tom Ball, Sharon Bell, Pam Daniels, John Dubois, Bruce Eklund, Kevin Grandy, Dave Guthman, Karen Hammond, Telma Hauth, Denise Hayes, Margie Holloway, Bill Holmes, Carol Hurlburt, Rawleigh Irvin, Dave Johnson, Kathy Lyle, Shannon Pettit, Larry Phillips, Judi Pratt, Estelle Rizzo, Maureen Ronan, Mary Shaw, John Storbeck, Beth Taylor, Steve Tucker, Ernie Veach-White, Nancy Wilson, JCI Committee Sentencing Guidelines Representative, Susan Curtright, Allyson Erickson,

PURPOSE

Alan introduced the purpose of the meeting. The goal is for the group to discuss and come to a better understanding about a number of issues that arose during the July 26 meeting, including:

Graphical User Interface (GUI) Attributes

Mainframe Screen Attributes

Differences Between GUI and Mainframe Screens

JCI Project Direction

JIS Strategy

The focus of the discussion will be on understanding GUI/Mainframe attributes and differences. At the end of the discussion we will note how these differences can best fit the JCI Project direction within reasonable deliverable timeframes that are also consistent with JIS strategy.

REVIEW / APPROVE MEETING MINUTES

July 26 Joint Committee-Work Group Meeting Minutes:

The group deferred approval to the September 21-23 meetings.

August 31-September 1 Acceptance Testing Minutes:

The group deferred approval to the September 21-23 meetings.

�

DEFINITIONS AND TERMINOLOGY

Eric began the discussion by reviewing a set of terms and definitions,

See Attachment 1.

The group agreed that what they identified a Graphical User Interface (GUI) with Windows and the behavior and navigation demonstrated by Windows applications.

Eric noted that GUI is event driven, and that data is committed to the database when the data entry for a field is complete. Mainframe systems are transaction driven, and data is committed to the database when all data entry for a screen is complete. Also in a GUI or Windows environment some operating features are more robust, printing being a primary example.

The group asked for a definition of Data Dictionary. A data dictionary is information (or metadata) about data. It provides standard definitions for data elements, tables, and describes their size and relationships.

The group asked it the JCI Data Dictionary and Project Meeting Minutes could be made available on-line instead of via paper. Meeting minutes sometimes exceed the attachment size limitation rules for local networks.

The group also asked for a definition of the following terms:

Interface – Translation between the system and the human operator.

Front End – Generally software products that execute user applications.

Back End – Generally software products that manage other applications on a LAN.

These definitions fit the context of our discussion about how the system is presented to the operator on the screen. Eric explained, however, that the definition of each of these is contextually dependent.

ELEMENTS OF A GOOD SYSTEM

Given the commonly accepted definitions of a GUI and Mainframe system, Eric emphasized the fact that the user interface alone does not necessarily mean a system is good or less than good. Alan cited the difficulties juvenile departments are having with their new GUI Risk Assessment application and the limitations inherent in their old mainframe JUVIS application as examples of systems that fail to acquire the ‘good’ software moniker.

Eric asked each individual in the group to list the elements that make a good system in the context of the following three categories:

Functionality - What processes the system supports

Performance – How well the functionality is supported by the system

Maintainability – How easily the system can be changed to meet new needs

See Attachment 2, Elements of a Good System. Both the GUI and the mainframe environments support all of the attributes of a good system except for the functional capability for user-customized windows and user-created macros, both of which can be features that are built-in to GUI applications. Although some attributes are better in the GUI environment (like navigation, sorting flexibility, appearance), or have advantages in the mainframe environment (like data security), Eric indicated that all are dependent on quality design decisions.

The Committee-Work Group agreed that all of the elements listed in Attachment 2 are high priority for a good system. The group noted that a GUI implementation would be nice to have for some items, including flexible notification process, user-customizable windows, ability to use macros, and the ability for a user to interrupt current process, perform another process, and return to the original process. The group identified none of the listed elements for a good system as critical to have in a GUI implementation for JCI.

A new issue was raised about the need to sign-off one application when looking a case data for the same person in SCOMIS and JASS for example. This problem does not serve the need to accomplish a single business function seamlessly. Alan said he would add this to the JCI Issues list.

Eric reviewed Attachment 3, A GUI Perspective, with the Committee-Work Group comparing the following ease of use qualities in a GUI and mainframe environment:

Flow of control & easy navigation is a function of good design; GUI icons and tree structures have some advantages here.

The number of screens that are required to complete a business process is a function of good design, and user-decisions about what is included in a unit of work. Real estate issues come in to play here.

Traditionally GUI has done a better than the mainframe at developing easier ways for a user to recover from mistakes. Better design can improve the ease of recovery from mistakes on the mainframe.

GUI field edits are more interactive since they are presented field-by-field, but the ability to provide data edits and data integrity are no different in either the mainframe or GUI environments.

Help is easily accessed in either environment. [The group commented that Help can be equally arcane in both as well!]

GUI screen expandability is easier & more intuitive with scroll bars. Compare for example scrolling on the mainframe Defendant Case History (DCH) screen.

GUI human resources are less available and more expensive

GUI infrastructure and network resources are more complex (middleware is a liability for the first-time GUI project)

Requirement to link legacy databases with new GUI applications is an additional layer of complexity demanding hard-to-find expertise.

GUI development time is traditionally understood to be faster than mainframe application development time except for first time GUI projects. This adage is amplified by the CAPS and ACORDS experience.

Important to understand is that any project’s development time is completely based on the system’s size and complexity. This is true for both GUI and mainframe projects.

Alan also noted that a key point to understand is that with a GUI development approach for even part of the system, the JCI Project is unable provide a delivery date for a finished product. Of the other two OAC GUI projects---CAPS and ACORDS---neither have estimated delivery dates. The size and complexity of the JCI project demand that it be founded on an existing and a stable framework.

JCI Strategy

Eric reviewed the project’s direction in the context of the diagram, below.

Middleware is not yet positioned at OAC to route data between the GUI client and the mainframe server. This is a large infrastructure and network problem that is being worked on by OAC independent of application design but upon which GUI application deployment is absolutely dependent.

Mainframe screens do not require middleware. In traditional mainframe application development, the database retrieval routines are a part of the screen programs which directly access the DB2 data on the mainframe server.

In order to preserve a future migration path to GUI for JCI screens, the development strategy being recommended for JCI at this time is to write stored procedures for all new JCI screen development. The function of a stored procedure is to perform data retrieval and maintenance tasks. When middleware is available, then JCI stored procedures that have been linked to JCI mainframe screens can be migrated to a GUI screen design.

��������

���

Alan said that this strategy retains the mainframe path, enables the project to plan for delivery dates, and leaves the door open to future mainframe development.

Fred Thompson asked once the middleware is available and once JCI mainframe screens have been developed, what level of resources can be assigned to migrating JCI to a GUI presentation? Alan replied he could not answer that question because it entails too many unknowns like the budget for the next biennium, JIS Committee priorities, and resource allocations.

Jim Phoenix asked if this recommendation involved screen wrapper software where the mainframe screen continues to be used by the system but is displayed to the user in a GUI presentation. Eric responded that screen wrappers could be used as an optional access method to mainframe screens.

Fred indicated that he would feel more comfortable if the OAC could commit to providing probation case management functionality in a GUI application. Alan replied that the OAC is currently committed to a GUI strategy, but that he could not commit to delivery dates for developing a GUI application, noting that all delivery dates for the GUI-based CAPS and ACORDS projects have been withdrawn.

Mel Jewel indicated that juvenile departments are not willing to wait for GUI application development issues to be resolved before JUVIS is replaced and enhanced with probation functionality.

Rena asked if GUI/mainframe design decisions on probation could be deferred, without throwing out JCI delivery dates, and if middleware becomes available then develop this functionality in GUI.

Alan and Eric agreed that the JCI Project Pan could identify the probation design date when a decision would need to be made about whether to pursue a GUI or mainframe development path. This would leave the door open a little longer, but if a GUI decision were made it will change the project plan and may change the delivery dates for probation.

Most committee-work group members were comfortable with continuing to pursue a mainframe development path for the juvenile and referral and detention functions (aka JUVIS replacement) and with deferring a final decision on the development path for district and juvenile court probation until the design efforts demand it.

Fred disagreed, indicating that many limited jurisdiction probation departments may be unwilling to accept a mainframe system as a replacement for GUI applications in use now. Alan reminded the group that the original design plan for probation called for both GUI and mainframe screens rather than an exclusive GUI design.

Alan and Eric committed to identifying the date for deciding whether to develop the probation function using a GUI or mainframe development path in order to avoid delaying design efforts.

NEXT MEETING DATES	

September 21-22: 	Work Group

September 23:		Committee

October 25-26: 		Work Group

October 27:		Committee

�
Definitions and Terminology

GUI�
Graphical User Interface�
�
Mainframe�
Large Centralized Computer System�
�
Client Server�
A system in which parts of an application operates on different computer systems.�
�
Web Application�
System that operates over the Internet�
�
DB2�
Database Management System used on the OAC Mainframe�
�
Server�
The computer that manages the storage of data.�
�
Client�
The computer that manages the presentation of data.�
�
Middleware�
Computer software that manages the routing of data between a server and a client�
�
Operating System�
Software the runs the computer and controls applications.�
�
Application�
Software that provides functional support for user information needs.�
�
Data�
Data�
�
Information�
The compilation of data for a useful purpose.�
�

�
Elements of A Good System

Functionality (What processes the system supports)

Summary: All of the functional attributes of a good system listed below are supported by both the GUI and mainframe except the capability to customize screens and use macros both of which can be features that are built-in to GUI applications. Although some attributes are better in GUI environment or have advantages in the mainframe environment, all are dependent on design quality. The JCI Committee-Work Group felt that all these functional attributes are High Priority except for items 10, 23, 24 & 26 where the GUI attribute is noted as Nice-to-Have.

Item�
GUI Only?�
Priority�
Good Functional Attribute�
Comment�
�
�
�
�
Information Sharing between different organizational entities.�
�
�
�
�
�
Provide user access to information not provided manually.�
�
�
�
�
�
Easy to navigate from one process to the next.�
Point & Click, Icons make GUI easier.�
�
�
�
�
Information able to transfer between different applications or different parts of one application.�
�
�
�
�
�
User submitted standard production reports run on demand with ease.�
Plan is to run reports on back-end.�
�
�
�
�
Historical data maintained and visible to the user.�
�
�
�
�
�
Ability to browse data.�
Easier w/GUI scroll bars & windows�
�
�
�
�
Flexible Query.�
JCI Plan is for Web BRIO (GUI)�
�
�
�
�
Data security. Data Visible to authorized users. User is aware of confidential information.�
This is a function of the application---some mainframe advantages�
�
�
�
GUI nice to have�
Flexible notification (hardcopy) process.�
Better text processing on GUI�
�
�
�
�
Data extraction into forms.�
Same as #10�
�
�
�
�
Data Validation�
�
�
�
�
�
Flexible sorting (selection and sequencing).�
GUI better w/point & click sorting�
�
�
�
�
Data Upload and Download.�
�
�
Item�
GUI Only?�
Priority�
Good Functional Attribute�
Comment�
�
�
�
�
Single System (avoid using multiple systems to accomplish a business function).�
Issue here is that to look at data for same person in SCOMIS & JASS requires sign-off from one application.�
�
�
�
�
Fast (Batch) data entry.�
�
�
�
�
�
Ability to read data concurrent with updates.�
Database attribute�
�
�
�
�
Prevention of data being unknowingly updated by another user.�
Database & application design issue�
�
�
�
�
Pleasant Appearance.�
Better on GUI�
�
�
�
�
Common User Interface (Intuitive). Standard look and feel.�
Better on GUI, but design issue�
�
�
�
�
Well Documented.�
GUI has some advantages�
�
�
�
�
Easy to Train.�
Same as #21�
�
�
Yes�
GUI nice to have�
Customizable.�
�
�
�
Yes�
Same as #23�
Ability to use macros.�
For mainframe, this is a Host Explorer function now.�
�
�
�
�
Ability to easily correct clerical errors.�
Design function�
�
�
�
GUI nice to have�
Ability to interrupt current process, do another process and to return to the original process.�
Easier on GUI, but design dependent�
�
�
�
�
Elimination of duplicate data entry.�
�
�
�
�
�
Ability to generate Email notifications.�
�
�
�
�
�
�
�
�
�
Performance (How well the functionality is supported)

Summary: All of the performance attributes of a good system listed below are available in both the GUI and mainframe environment, most by virtue of the database management, network, and hardware performance. GUI is better in the areas of reliance on user memory for data entry and error tolerance. The JCI Committee-Work Group felt that all these performance attributes are High Priority.

Item�
GUI Only?�
Priority�
Good Performance Attribute�
Comment�
�
�
�
�
Responds according to user needs (screen display and printing).�
Database attribute�
�
�
�
�
System is available when needed.�
Database management�
�
�
�
�
Limited reliance on user memory for data entry and system usage.�
Better w/GUI �
�
�
�
�
Ability to print at different locations.�
Network/Hardware attribute�
�
�
�
�
Data is saved when computer bleeps.�
Database attribute�
�
�
�
�
System is tolerant of errors and attempts to recover as much as possible and restart the user to where they left off.�
Better w/GUI�
�
�
�
�
Ability to screen print.�
�
�
�
�
�
7x24 Operations.�
Long Range OAC Database Mgmt Goal�
�

Maintainability (How easily the system can be changed)

Summary: All of the maintainability attributes of a good system listed below are more dependent on an application’s design quality and human resources than they are on the target user interface (GUI or mainframe). The current caution for developing/maintaining GUI applications is to select a reliable, stable company that can and will support the software in the long term or until OAC Web developers are retained and experienced.

Item�
GUI Only?�
Priority�
Good Maintainability Attribute�
Comment�
�
�
�
�
Ability to add, change, or remove fields on screens and reports.�
�
�
�
�
�
Ability to quickly repair system errors.�
�
�
�
�
�
Ability to change business processes without negative impact to other processes.�
�
�
�
�
�
Ability to upgrade and use new technology when available.�
�
�

�

The terms ‘ease of use’ and ‘flexibility’ are not easily separated when referring to a graphical user interface (GUI) from the end users’ perspective.

Provided the GUI has been designed and built correctly, the user will easily be able to follow the flow of control as the commands and controls will be easy and quick to learn, hence be user friendly. This is typically accomplished by making logical groups (buttons, text boxes etc…) and adding a simple screen navigation system such as the tree structure in the JCI GUI. The tree was used because of the hierarchical nature of the data being displayed. If the data were not an issue, tabs, buttons or pure menu navigation would have been considered as an option.

The number of screens in a GUI environment can be less, the same or larger than those in its mainframe counterpart. This is a decision made during analysis of the system and varies between projects. Key points include how crowded the screen is, will more or less information be presented, or will there be new functionality added.

A GUI provides less of a burden on the users’ memory as there are common look and feel standards for GUI’s making many different applications look similar. Again, depending on the approach the analysis team takes and discussions with users, will determine the final look and feel.

A good GUI will allow for easy recovery from a users’ mistake and because of a friendly interface, the user will remember the steps not to take to reproduce that error. Error messages, dialog boxes and text colors are an excellent means to pass information and alerts to these mistakes and provide valuable feedback. Within the JCI GUI, the team had made the decision to report all errors associated with a screen at once instead of the ‘one-at-a-time’ approach employed on the mainframe side.

A GUI will also provide data integrity that the user will not have to be concerned with. For example, input is checked to enforce the expected data type and/ or value length so that invalid data will not enter the system. There are a variety of ways to accomplish this; however, in the JCI GUI prototype the team decided to enforce the rules within the GUI. This meant that the user could not type a letter if a number was required. Also by limiting or having predetermined input helps maintain the data. This is typically seen with data inside a drop-down box, or pre-filled text fields.

The “Help” feature is easily accessible for users in a GUI environment with the click of a button or by pressing one key, rather than having to recall which special keys(s) must be typed to invoke the help screen(s) as in many mainframe systems.

The development time to implement a GUI based system is completely based on the system’s complexity. As one expects, small, simple GUI systems take less time to build and deliver than do larger more complex ones. The shape a GUI system takes on is directly related to the wants, needs and expectations of the users. If the users find a particular feature attractive, it could add extra time to the development which may or may not be feasible given the timeframe. As with any project, a small timeframe will place limitations on the scope of the GUI system pushing certain features or requirements to a later phase.

Moving outside the scope of the GUI interface, a major point to consider is the approach to be used to tie the GUI to the server and back into the database. This decision can also cause the project to go overtime because even though newer technology can be more flexible and robust than its predecessors, few if any team members will be skilled in this technology. Today, WebSphere is being used [by ACORDS] but it will be a great deal of time before all the features promised by the product will be released. This has the potential to push any projects relying on this product to deliver set functionality to be drawn out, whereas older and less complex technology could provide an alternate route, but have the disadvantage of being obsolete and unmaintainable as time passes.

oacsrv1\jass\jci\minutes\1999\990909 WG-Committee.doc		Page � PAGE �10�

oacsrv1\jass\jci\minutes\1999\990909 WG-Committee.doc		Page � PAGE �8�

ATTACHMENT 1

Attachment 2: Elements of A Good System

ATTACHMENT 2

oacsrv1\jass\jci\minutes\1999\990726 WG-Committee.doc							Page � PAGE �12�

ATTACHMENT 3

A GUI PERSPECTIVE by Michael Hass, August 12, 1999

oacsrv1\jass\jci\minutes\1999\990909 WG-Committee.doc							Page � PAGE �11�

 Mainframe

 Server

 DB2 Data

 Terminal

 (GUI)

 Client

 Mainframe

 Screen

 Client

 DB2 Stored

 Procedures

 Middleware

