[image: image2.png]2

WASHINGTON

COURTS

Administrative Office of the Courts

Performance Team

Java Performance Assessment
Researched by:
John Crutcher

Rick Lee

Beth McGrath
Hitendra Pavuluru

Mike Simpson

Radha Yarlagadda
3Introduction

4Data Access

4DBA Insight

4Escalations, Timeouts, and Deadlocks

5SQLJ

5Database Isolation Levels

7Bean Caching

9Optimistic locking

9WebSphere Bean Cache

11Production Environment

12Results

14JProbe

14Manage Event

16ManageEvents

19ManageParticipants

21ManageCase

23ConsolidateCases

24Purify

24Results

24Analysis

25Summary of Recommendations

Introduction

This month, the Badgers began a detailed study of the factors effecting performance for java applications at the AOC. In order to begin addressing performance concerns, it was necessary to have a detailed understanding of the factors contributing to the problem. We considered source code, build processes, resource constraints, data access, and the production environment. Using all of the tools we had available (and recommending some which are not currently available), we have accumulated a significant amount of information which will help us in determining where to allocate development time to improve performance.
Data Access
DBA Insight

This sprint we met with the DBAs to begin to determine where java apps are executing slow or excessive queries.

Topics considered the following topics
· How to measure performance.

· What system logs show about performance in the java apps.

· Is a controlled test necessary.

· Are any particular queries deadlocking?

· Are any particular queries performing badly?

· Correct use of Prepared Statements

· Resource availability: Cache/Buffer sizing, CPU utilization, connection pool sizes.
· Which isolation levels/locking levels to use
· REPEATABLE_READ/Read stability seems to be the default transaction type for all entities.

· Commit option C, Activate At Transaction, Load At Transaction

· Pessimistic Locking (lock at start of transaction instead of just during update)

Meeting results and subsequent analysis determined that:

· We should use Cursor Stability (READ_COMMITTED) instead of Read Stability (REPEATABLE_READ).

· Switch to Optimistic Locking instead of Pessimistic Locking

· Test w/ JIS and everything else

· DBAs official position is Don’t use NT for performance analysis because. We think we’ll have to because mainframe isn’t controllable/too many variables/other databases compete for memory and cache.
Escalations, Timeouts, and Deadlocks

The following tables are causing lock escalations:
CSG

EVD

EVN

PAA

PEL

PRA

RLX
The CMT table occasionally deadlocks ACORDS.

The EVN and RLX tables are occasionally causing transactions to timeout.

SQLJ
DBAs reiterated their desire for us to use SQLJ in future applications/refactorings. According to Tariq:

“Web applications are almost exclusively using Dynamic SQL. There is a very big performance difference between applications that use Dynamic SQL compared to ones which use Static(bound) SQL. Even though it is not yet J2EE compliant - would recommend that we keep SQLJ on the radar for parts of the application that have performance issues.

Attached link that has details explained fairly well.

http://www-106.ibm.com/developerworks/db2/library/techarticle/0302tsui/0302tsui.html”

Database Isolation Levels
The isolation level names in db2 are confusing because the JDBC naming convention clashes with the DB2 convention. This chart explains them:
	JDBC value
	DB2 isolation level
	Definition
	Dirty Read
	Non Repeatable Read
	Phantom Read

	SERIALIZABLE
	Repeatable read
	Ensures a transaction's exclusive read-write access to data. It includes the conditions of ReadCommitted and RepeatableRead and stipulates that all transactions run serially to achieve maximum data integrity. This yields the slowest performance and least concurrency. The term serializable in this context is absolutely unrelated to Java's object-serialization mechanism and the java.io.Serializable interface.

SELECT * FROM orders WHERE Total > 2000 would not only lock the rows that match the predicate condition, but also all rows in the table
	N
	N
	N

	REPEATABLE_

READ

CURRENTLY

USED
	Read stability
	Only data that have been committed by a transaction can be read by other transactions, and multiple reads will yield the same result as long as the data have not been committed.

SELECT * FROM orders WHERE Total > 2000 will only lock the rows that meet the condition. If the same statement is reissued within the transaction, the result could be different.
	N
	N
	Y

	READ_

COMMITTED

SHOULD USE
	Cursor stability
	Only data that have been committed by a transaction can be read by other transactions.

SELECT * FROM orders WHERE Total > 2000 rows will only be locked as the resultset is traversed.
	N
	Y
	Y

	READ_

UNCOMMITTED
	Uncommitted read
	Data that have been updated but not yet committed by a transaction may be read by other transactions.
	Y
	Y
	Y

We’re using JDBC level REPEATABLE_READ (Read Stability) and all other applications are using READ_COMMITTED (Cursor Stability). DBAs recommend that we relax the isolation level as soon as possible. Doing so would introduce the possibility of non-repeatable reads where there was none before, but the ACORDS and CAPS architectures make this somewhat unimportant.

Bean Caching

We also need to tune the Entity Bean caching strategy. Defaults are used now and are likely inappropriate.
Bean Cache - Activate at

Specifies the point at which an enterprise bean is activated and placed in the cache. Removal from the cache and passivation is also governed by this setting.

This property is an IBM extension to the standard J2EE deployment descriptor.

	Data type
	String

	Default
	Transaction

	Range
	Valid values are Once, Transaction, and Activity session

More information about valid values follows:

Once

Indicates that the bean activates when it is first accessed in the server process, and passivates (and is removed from the cache) at the discretion of the container, for example, when the cache becomes full.

Transaction

Indicates that the bean activates at the start of a transaction and passivates (and is removed from the cache) at the end of the transaction.

Activity session

Indicates that the bean activates and passivates as follows:

· On an ActivitySession boundary, if an ActivitySession context is present on activation

· On a transaction boundary, if a transaction context (but no ActivitySession context) is present on activation

· Otherwise, on an invocation boundary

The values of the Activate at and Load at settings govern which commit options are used, as follows:

· For commit option A (implies exclusive database access), use Activate at = Once and Load at = Activation.

This option reduces database I/O (avoids calls to the ejbLoad function) but serializes all transactions accessing the bean instance. Option A can increase memory usage by maintaining more objects in the cache, but can provide better response time if bean instances are not generally accessed concurrently by multiple transactions. To use Option A successfully, you must also set Concurrency control to Pessimistic.

When workload management is enabled (it is currently NOT), you cannot use Option A. You must use settings that result in the use of options B or C.

· For commit option B (implies shared database access), use Activate at = Once and Load at = Transaction.

Option B can increase memory usage by maintaining more objects in the cache. However, because each transaction creates its own copy of an object, there can be multiple copies of an instance in memory at any given time (one per transaction), requiring database access at each transaction. If an enterprise bean contains a significant number of calls to the ejbActivate function, using Option B is beneficial because the required object is already in the cache. Otherwise, this option does not provide significant benefits over Option A.

· For commit option C (implies shared database access), use Activate at = Transaction and Load at = Transaction.

This option reduces memory usage by maintaining fewer objects in the cache; however, there can be multiple copies of an instance in memory at any given time (one per transaction). This option can reduce transaction contention for enterprise bean instances that are accessed concurrently but not updated.

Bean Cache - Load at

Specifies when the bean loads its state from the database. The value of this setting implies whether the container has exclusive or shared access to the database.

This property is an IBM extension to the standard J2EE deployment descriptor.

	Data type
	String

	Default
	Transaction

	Range
	Valid values are Activation and Transaction

Additional information about valid values follows:

Activation

Indicates that the bean loads when it is activated (regardless of Activate at setting) and implies that the container has exclusive access to the database.

Transaction

Indicates that the bean loads at the start of a transaction and implies that the container has shared access to the database.

The Activate at and Load at settings govern which commit options are used. The commit options are described in the Enterprise JavaBeans specification. For more information about this setting and achieving a given commit behavior, see Bean Cache - Activate at.

Commit option

Specifies which commit option is used as a result of bean cache settings. The commit options are described in the Enterprise JavaBeans specification.

	Data type
	String

	Range
	Valid values are A, B, and C

Concurrency control

Specifies how the bean is to handle concurrent access to its data. This setting is applicable only for EJB 1.x-compliant entity beans.

This property is an IBM extension to the standard J2EE deployment descriptor.

	Data type
	String

	Range
	Valid values are Optimistic or Pessimistic

Optimistic locking

The main problem with a pessimistic locking is that transactions have to wait for each other. Optimistic locking assumes that it is unlikely that another transaction would want to update the same entity at the same time. With assumption, locking the data in the beginning of the transaction can be avoided. Instead, it is only locked at the end of the transaction when it is updated. This method requires a way to ensure that the data has not been altered between the time it was read it and when it was updated (a WriteWriteConflict).
A pessimistic locking strategy is one where a lock is obtained early in the transaction and kept until either the transaction is committed or rolled back. Other transactions wanting access to this data wait until the lock is released.

ACORDS is defaulting to Pessimistic in all cases, and should be changed to Optimistic.
WebSphere Bean Cache
The WebSphere Server parameter ApplicationServers/Development Server/EJB Container/Cache Size specifies the number of buckets in the active instance list within the EJB container.

A bucket can contain more than one active enterprise bean instance, but performance is maximized if each bucket in the table has a minimum number of instances assigned to it. When the number of active instances within the container exceeds the number of buckets, that is, the cache size, the container periodically attempts to reduce the number of active instances in the table by passivating some of the active instances. For the best balance of performance and memory, set this value to the maximum number of active instances expected during a typical workload.

	Data type
	Integer

	Units
	Buckets in the hash table

	Range
	Greater than 0. The container selects the next largest prime number equal to or greater than the specified value.

	Default
	2053

Production Environment
This sprint we met with several people from Operations to determine where what role the production environment hardware and configuration is playing in application performance.

We wanted to know:

· Current LPARs on both systems and their purposes How are CPU and memory resources are allocated among various LPARs?

· Are any performance monitoring tools are running natively?

· We'd like usage details for CPU, Memory, Bus, Disk, Network. How do we get it?

· Is there already something in place recording this stuff? Do we need to schedule a test and turn on extensive logging?

· Is Wily (or anything else) ever used to monitor performance? How useful is it?

· Why can we see big differences in response time from one query to the next? Is it a development only problem?

· Are there things that you know the java applications are doing that have a negative impact on performance/load? Any suggestions?
This is our understanding of the current production hardware/software segmentation:

[image: image1]
Results

The production JVM heap size is 600-700 mb for ACORDS. We should determine why it’s using so much memory. Caps/ACORDS dev heap is 256 mb. However, not much garbage collection activity in production, so we may be tuned correctly. Apps aren’t demonstrably faster after a WebSphere restart.

Caps/ACORDS run in the same WebSphere cell in production. A separate cell exists for Development, Test, and Staging.

CPU sometimes maxes out for long periods of time. This was very common before they split legacy apps off onto their own mainframe. Now CPU runs %70-%80 most of the time with occasional periods at %100

Since production DB2 and Production WebSphere run at higher priority than everything else, the CPUs running at %100 doesn’t necessarily imply that interactive users are getting bad response time, just that batch jobs/reports may be getting starved. Non-production databases and applications are also be starved by protracted periods of heavy CPU utilization.

No observed disk/io/network problems in the production environment, but there are reports of poor network performance in the field at Division 2.

Production has its own DB2 Buffer Pools, everything else shares much smaller buffer pools. DBA’s will look to see if the prepared statement cache is sufficiently large.

A separate Wiley demo was held, and we’ve recommended that the latest version be installed in production. It will provide the actual data we need to tune production, as well as a mechanism for historical problem analysis.

Since development, test, staging share databases on DB2D which is tuned for low priority scheduling and with minimal caches, it will not be possible to reliably reproduce timing results in the mainframe environment. Any comparative benchmarking will only be possible in our isolated NT environment.

JProbe

We ran a series of tests using the JProbe profiler to isolate which methods are responsible for performance problems. In the following tables, note methods which are called many times, or have large amounts of time spent in the method (Method Time).

Manage Event
	Package
	Name
	Calls
	Cumulative Time
	Method Time

	com.netsis.util12
	DataTypeConvertor.toHexString(byte[])
	282,528
	10,044 (34.6%)
	4,977 (17.2%)

	com.ibm.ejs.container
	EJSHome.createWrapper(BeanId)
	109
	4,577 (15.8%)
	4,567 (15.7%)

	java.lang
	StringBuffer.append(char)
	4,520,467
	4,346 (15.0%)
	4,346 (15.0%)

	javax.rmi.CORBA
	Util.copyObject(Object, ORB)
	378
	2,033 (7.0%)
	2,033 (7.0%)

	java.rmi.server
	UnicastRemoteObject.<init>()
	2
	1,152 (4.0%)
	1,112 (3.8%)

	com.netsis.acords.server.business.person
	PersonManagerBean.getAttorneys(EventParticResultData[], String)
	511
	11,466 (39.5%)
	1,112 (3.8%)

	com.ibm.ejs.container
	EJSHome.postCreate(BeanO, Object, boolean)
	12
	791 (2.7%)
	781 (2.7%)

	javax.rmi.CORBA
	Util.copyObjects(Object[], ORB)
	59
	651 (2.2%)
	651 (2.2%)

	java.lang
	StringBuffer.<init>(int)
	282,528
	471 (1.6%)
	471 (1.6%)

	java.io
	PrintStream.println(String)
	1,470
	451 (1.6%)
	451 (1.6%)

	com.ibm.websphere.cpi
	PersisterHome.activateBean(Object)
	25
	561 (1.9%)
	451 (1.6%)

	java.sql
	ResultSet.next()
	3,893
	421 (1.5%)
	421 (1.5%)

	com.ibm.ejs.container
	EJSContainer.preInvoke(EJSWrapper, int, EJSDeployedSupport)
	379
	581 (2.0%)
	330 (1.1%)

	com.netsis.acords.server.business.person
	PersonManagerBean.getEventParticData(String, String)
	5
	12,949 (44.6%)
	310 (1.1%)

	java.sql
	PreparedStatement.executeQuery()
	521
	300 (1.0%)
	300 (1.0%)

	com.netsis.acords.server
	RemoteHttpServlet.bind()
	1
	1,632 (5.6%)
	290 (1.0%)

	Package
	Name
	Calls
	Cumulative Time
	Method Time

	com.netsis.util
	DataTypeConvertor.toHexString(byte[])
	282,528
	10,044 (34.6%)
	4,977 (17.2%)

	com.netsis.acords.server.data
	EventParticResultData.getPaaToken()
	281,300
	230 (0.8%)
	230 (0.8%)

	com.netsis.acords.server.util
	Utility.sqlDtToUtilDt(Date)
	3,102
	280 (1.0%)
	40 (0.1%)

	com.netsis.acords.server.cache
	DataHolder.isKey(Hashtable, String)
	2,720
	310 (1.1%)
	150 (0.5%)

	com.netsis.acords
	Data.<init>()
	1,453
	0 (0.0%)
	0 (0.0%)

	com.netsis.acords.security
	ResourcePermission.equals(Object)
	1,326
	20 (0.1%)
	10 (0.0%)

	com.epicedge.security.acl
	AclPermission.equals(Object)
	1,326
	10 (0.0%)
	10 (0.0%)

	com.netsis.util
	Debug.println(String)
	1,299
	491 (1.7%)
	10 (0.0%)

	com.netsis.util
	Debug.currentTime()
	1,299
	150 (0.5%)
	0 (0.0%)

	com.netsis.acords.server.data
	EventParticResultData.getPaaType()
	1,252
	0 (0.0%)
	0 (0.0%)

com.netsis.acords.server.business.person.PersonManagerBean.getAttorneys(EventParticResultData[], String)
Method Detail - Parents

	Calls
	Name
	Cumulative Time
	Method Time

	511
	PersonManagerBean.getEventParticData(String, String)
	11,466 (39.5%)
	1,112 (3.8%)

Method Detail - Method

	Calls
	Name
	Cumulative Time
	Method Time

	511
	PersonManagerBean.getAttorneys(EventParticResultData[], String)
	11,466 (39.5%)
	1,112 (3.8%)

Method Detail - Children

	Calls
	Name
	Cumulative Time
	Method Time

	280,559
	DataTypeConvertor.toHexString(byte[])
	9,934 (34.3%)
	4,897 (16.9%)

	280,559
	EventParticResultData.getPaaToken()
	230 (0.8%)
	230 (0.8%)

	280,559
	String.equals(Object)
	190 (0.7%)
	190 (0.7%)

	511
	ArrayList.<init>()
	0 (0.0%)
	0 (0.0%)

	511
	EventParticResultData.getAttorney()
	0 (0.0%)
	0 (0.0%)

Analysis

Need to optimize getAttorneys to NOT call toHexString, getPaaToken, and String.equals so many times: something is being looked up repetitively that shouldn’t be.

(In addition, that code appends 4 ½ million characters to a StringBuffer one at a time)

ManageEvents
	Package
	Name
	Calls
	Cumulative Time
	Method Time

	javax.rmi.CORBA
	Util.copyObject(Object, ORB)
	2,387
	5,448 (13.2%)
	5,448 (13.2%)

	com.ibm.ejs.container
	EJSHome.createWrapper(BeanId)
	234
	4,046 (9.8%)
	4,046 (9.8%)

	java.sql
	PreparedStatement.executeQuery()
	5,939
	2,864 (7.0%)
	2,864 (7.0%)

	com.netsis.acords.server
	BCBean.sortParticipantsByRole(ParticipantData[])
	3
	5,147 (12.5%)
	2,223 (5.4%)

	javax.rmi.CORBA
	Util.copyObjects(Object[], ORB)
	342
	1,232 (3.0%)
	1,232 (3.0%)

	java.sql
	ResultSet.next()
	12,012
	1,062 (2.6%)
	1,062 (2.6%)

	java.lang
	StringBuffer.append(String)
	833,712
	1,041 (2.5%)
	1,041 (2.5%)

	java.io
	PrintStream.println(String)
	11,476
	1,001 (2.4%)
	1,001 (2.4%)

	com.ibm.ejs.container
	EJSContainer.postInvoke(EJSWrapper, int, EJSDeployedSupport)
	2,397
	891 (2.2%)
	871 (2.1%)

	java.rmi.server
	UnicastRemoteObject.<init>()
	2
	871 (2.1%)
	831 (2.0%)

	com.ibm.ejs.container
	EJSContainer.preInvoke(EJSWrapper, int, EJSDeployedSupport)
	2,397
	1,162 (2.8%)
	771 (1.9%)

	com.ibm.ejs.container
	EJSHome.getEnumeration(Finder)
	236
	821 (2.0%)
	721 (1.7%)

	java.sql
	ResultSet.getString(String)
	56,821
	751 (1.8%)
	671 (1.6%)

	java.sql
	Connection.prepareStatement(String)
	10,496
	601 (1.5%)
	591 (1.4%)

	java.sql
	PreparedStatement.close()
	5,292
	581 (1.4%)
	581 (1.4%)

	com.ibm.websphere.cpi
	PersisterHome.activateBean(Object)
	195
	1,072 (2.6%)
	531 (1.3%)

	com.netsis.util
	DataTypeConvertor.toHexString(byte[])
	29,264
	1,011 (2.5%)
	511 (1.2%)

	com.ibm.ejs.container
	EJSHome.postCreate(BeanO, Object, boolean)
	14
	481 (1.2%)
	481 (1.2%)

	java.sql
	ResultSet.getDate(String)
	6,838
	491 (1.2%)
	471 (1.1%)

	java.lang
	String.toUpperCase()
	258,576
	461 (1.1%)
	461 (1.1%)

	com.ibm.ejs.persistence
	EJSJDBCFinder.nextElement()
	205
	541 (1.3%)
	451 (1.1%)

	java.lang
	StringBuffer.<init>(String)
	280,473
	441 (1.1%)
	441 (1.1%)

	com.netsis.acords.server.business.person
	PersonManagerBean.getParticData(String, String, String, AclPolicy)
	5
	5,778 (14.0%)
	441 (1.1%)

	java.lang
	StringBuffer.append(char)
	468,176
	421 (1.0%)
	421 (1.0%)

	Package
	Name
	Calls
	Cumulative Time
	Method Time

	com.netsis.acords.server
	ServerProxyCMPBean.getParticipants(String, String, String, AclPolicy, SessionTrackerData)
	5
	7,491 (18.2%)
	0 (0.0%)

	com.netsis.acords.server.business.person
	PersonManager.getParticData(String, String, String, AclPolicy)
	5
	7,471 (18.1%)
	0 (0.0%)

	com.netsis.acords.server.business.person
	_PersonManager_Stub.getParticData(String, String, String, AclPolicy)
	5
	7,471 (18.1%)
	0 (0.0%)

	com.netsis.acords.server
	ServerProxyCMP.getAppellateCaseData(CaseID, String, AclPolicy, SessionTrackerData)
	20
	6,630 (16.1%)
	0 (0.0%)

	com.netsis.acords.server
	EJSRemoteStatelessServerProxyCMP_5541de04.getAppellateCaseData(CaseID, String, AclPolicy, SessionTrackerData)
	10
	6,399 (15.5%)
	0 (0.0%)

	com.netsis.acords.server
	ServerProxyCMPBean.getAppellateCaseData(CaseID, String, AclPolicy, SessionTrackerData)
	10
	6,399 (15.5%)
	0 (0.0%)

	com.netsis.acords.server.business.acordscase
	CaseManagerBean.getAppellateCase(String, String, AclPolicy)
	38
	6,169 (15.0%)
	40 (0.1%)

	com.netsis.acords.server.business.acordscase
	CaseManager.getAppellateCase(String, String, AclPolicy)
	10
	6,129 (14.9%)
	0 (0.0%)

	com.netsis.acords.server.business.acordscase
	_CaseManager_Stub.getAppellateCase(String, String, AclPolicy)
	10
	6,129 (14.9%)
	0 (0.0%)

	com.netsis.acords.server.business.person
	PersonManager.getParticData(String, String, String, AclPolicy)
	5
	5,778 (14.0%)
	0 (0.0%)

	com.netsis.acords.server.business.person
	EJSRemoteStatelessPersonManager_d6fd582a.getParticData(String, String, String, AclPolicy)
	5
	5,778 (14.0%)
	0 (0.0%)

	com.netsis.acords.server.business.person
	PersonManagerBean.getParticData(String, String, String, AclPolicy)
	5
	5,778 (14.0%)
	441 (1.1%)

	com.netsis.acords.server.business.acordscase
	CaseManager.getAppellateCase(String, String, AclPolicy)
	10
	5,728 (13.9%)
	0 (0.0%)

	com.netsis.acords.server.business.acordscase
	EJSRemoteStatelessCaseManager_e63bd8ca.getAppellateCase(String, String, AclPolicy)
	10
	5,728 (13.9%)
	0 (0.0%)

	com.netsis.acords.server
	RMIServlet.getAppellateCaseData(CaseID, String)
	7
	5,588 (13.6%)
	0 (0.0%)

	javax.rmi.CORBA
	Util.copyObject(Object, ORB)
	2,387
	5,448 (13.2%)
	5,448 (13.2%)

	com.netsis.acords.server
	BCBean.sortParticipantsByRole(ParticipantData[])
	3
	5,147 (12.5%)
	2,223 (5.4%)

	com.netsis.acords.server
	RMIServlet.getParticipants(AppellateCaseData)
	2
	4,787 (11.6%)
	0 (0.0%)

	com.ibm.ejs.container
	EJSHome.createWrapper(BeanId)
	234
	4,046 (9.8%)
	4,046 (9.8%)

	java.sql
	PreparedStatement.executeQuery()
	5,939
	2,864 (7.0%)
	2,864 (7.0%)

	com.netsis.acords.server.business.person
	PersonManager.getEventParticData(String, String)
	20
	2,423 (5.9%)
	0 (0.0%)

	com.netsis.acords.server
	RMIServlet.getEvents(CaseID, String, String, EventParticipantData[])
	4
	2,393 (5.8%)
	10 (0.0%)

	com.netsis.acords.server
	BCBean.authenticate(String, String, String)
	1
	2,383 (5.8%)
	0 (0.0%)

	com.netsis.acords.server
	ServerProxyCMP.getEvents(CaseID, String, String, AclPolicy, SessionTrackerData, EventParticipantData[])
	8
	2,383 (5.8%)
	0 (0.0%)

	com.netsis.acords.server.business.person
	EJSRemoteStatelessPersonManager_d6fd582a.getEventParticData(String, String)
	12
	2,383 (5.8%)
	0 (0.0%)

	com.netsis.acords.server.business.person
	PersonManagerBean.getEventParticData(String, String)
	12
	2,383 (5.8%)
	210 (0.5%)

	com.netsis.acords.server
	RMIServlet.getEventParticData(CaseID, String)
	4
	2,273 (5.5%)
	0 (0.0%)

	com.netsis.acords.server
	ServerProxyCMP.getEventParticData(CaseID, String)
	8
	2,263 (5.5%)
	0 (0.0%)

	com.netsis.acords.server
	EJSRemoteStatelessServerProxyCMP_5541de04.getEventParticData(CaseID, String)
	4
	2,233 (5.4%)
	0 (0.0%)

	com.netsis.acords.server
	EJSRemoteStatelessServerProxyCMP_5541de04.getEvents(CaseID, String, String, AclPolicy, SessionTrackerData, EventParticipantData[])
	4
	2,213 (5.4%)
	0 (0.0%)

	com.netsis.acords.server
	ServerProxyCMPBean.getEvents(CaseID, String, String, AclPolicy, SessionTrackerData, EventParticipantData[])
	4
	2,213 (5.4%)
	0 (0.0%)

	com.netsis.acords.server.business.events
	EventManager.getEvent(CaseID, String, String, AclPolicy, EventParticipantData[])
	4
	2,203 (5.3%)
	0 (0.0%)

	com.netsis.acords.server.business.events
	_EventManager_Stub.getEvent(CaseID, String, String, AclPolicy, EventParticipantData[])
	4
	2,203 (5.3%)
	0 (0.0%)

	com.netsis.acords.server.business.person
	_PersonManager_Stub.getEventParticData(String, String)
	12
	2,183 (5.3%)
	0 (0.0%)

	com.netsis.acords.server
	ServerProxyCMPBean.getEventParticData(CaseID, String)
	4
	2,153 (5.2%)
	0 (0.0%)

	com.netsis.acords.server.business.person
	PersonManager.getEventParticData(String, String)
	4
	2,143 (5.2%)
	0 (0.0%)

	com.netsis.acords.server.business.events
	EventManager.getEvent(CaseID, String, String, AclPolicy, EventParticipantData[])
	4
	1,993 (4.8%)
	0 (0.0%)

	com.netsis.acords.server.business.events
	EJSRemoteStatelessEventManager_fcecef0a.getEvent(CaseID, String, String, AclPolicy, EventParticipantData[])
	4
	1,993 (4.8%)
	0 (0.0%)

	com.netsis.acords.server.business.events
	EventManagerBean.getEvent(CaseID, String, String, AclPolicy, EventParticipantData[])
	4
	1,983 (4.8%)
	0 (0.0%)

	com.netsis.acords.server.business.trialcase
	TrialCaseManager.getTrialCaseData(byte[])
	76
	1,793 (4.3%)
	0 (0.0%)

	com.netsis.util
	Debug.println(String)
	10,101
	1,773 (4.3%)
	140 (0.3%)

	com.netsis.acords.server
	ServerProxyCMPHome.create()
	146
	1,692 (4.1%)
	0 (0.0%)

	com.netsis.acords.server
	ServerProxyCMP.createSecurityContext(UserData)
	4
	1,682 (4.1%)
	0 (0.0%)

	com.netsis.acords.server
	EJSRemoteStatelessServerProxyCMPHome_5541de04.create()
	73
	1,672 (4.1%)
	0 (0.0%)

	com.netsis.acords.server
	EJSStatelessServerProxyCMPHomeBean_5541de04.create()
	73
	1,642 (4.0%)
	0 (0.0%)

	com.netsis.acords.server.business.events
	EventManagerBean.getPrimaryEvents(byte[], CaseID, String, String, boolean, EventParticipantData[], Connection, SecurityContext, boolean)
	12
	1,642 (4.0%)
	40 (0.1%)

	com.netsis.acords.server.doc.mgmt
	RtfDocumentServlet.doGet(HttpServletRequest, HttpServletResponse)
	1
	1,532 (3.7%)
	0 (0.0%)

	com.netsis.acords.server.doc.mgmt
	RtfDocumentServlet.doPost(HttpServletRequest, HttpServletResponse)
	1
	1,532 (3.7%)
	60 (0.1%)

	com.netsis.acords.server
	RemoteHttpServlet.init(ServletConfig)
	1
	1,392 (3.4%)
	10 (0.0%)

	com.netsis.acords.server
	RemoteHttpServlet.bind()
	1
	1,382 (3.4%)
	310 (0.8%)

	com.netsis.acords.server.business.events
	EventManagerBean.getPrimaryEvents(byte[], CaseID, String, String, boolean, Connection, SecurityContext, boolean)
	8
	1,292 (3.1%)
	0 (0.0%)

	javax.rmi.CORBA
	Util.copyObjects(Object[], ORB)
	342
	1,232 (3.0%)
	1,232 (3.0%)

	com.netsis.acords.server
	BCBean.getSecurityPolicy(UserData)
	1
	1,192 (2.9%)
	0 (0.0%)

	com.ibm.ejs.container
	EJSContainer.preInvoke(EJSWrapper, int, EJSDeployedSupport)
	2,397
	1,162 (2.8%)
	771 (1.9%)

Method Detail: javax.rmi.CORBA.Util.copyObject(Object, org.omg.CORBA.ORB)

Method Detail - Parents

	Calls
	Name
	Cumulative Time
	Method Time

	5
	_PersonManager_Stub.getParticData(String, String, String, AclPolicy)
	1,612 (3.9%)
	1,612 (3.9%)

	5
	_ServerProxyCMP_Stub.getParticipants(String, String, String, AclPolicy, SessionTrackerData)
	661 (1.6%)
	661 (1.6%)

	4
	_ServerProxyCMP_Stub.createSecurityContext(UserData)
	621 (1.5%)
	621 (1.5%)

	4
	_SecurityManager_Stub.createSecurityContext(UserData)
	461 (1.1%)
	461 (1.1%)

	6
	_SearchManager_Stub.searchCase(SearchCaseData)
	180 (0.4%)
	180 (0.4%)

	4
	_EventManager_Stub.getEvent(CaseID, String, String, AclPolicy, EventParticipantData[])
	130 (0.3%)
	130 (0.3%)

	166
	_CommentTitleHome_Stub.findByToken(byte[])
	120 (0.3%)
	120 (0.3%)

	50
	_Case_Stub.getDetailCaseData()
	120 (0.3%)
	120 (0.3%)

Method Detail - Method

	Calls
	Name
	Cumulative Time
	Method Time

	2,387
	Util.copyObject(Object, ORB)
	5,448 (13.2%)
	5,448 (13.2%)

Analysis

Many of the calls to copyObject are in-container and should be optimized out. Only the calls originating with _ServerProxy* really need to be marshalling.

ManageParticipants
	Package
	Name
	Calls
	Cumulative Time
	Method Time

	com.netsis.acords.server
	ServerProxyCMP.getParticipants(String, String, String, AclPolicy, SessionTrackerData)
	8
	5,438 (7.6%)
	0 (0.0%)

	com.netsis.acords.server
	ServerProxyCMPBean.getParticipants(String, String, String, AclPolicy, SessionTrackerData)
	4
	4,817 (6.7%)
	0 (0.0%)

	com.netsis.acords.server.business.person
	PersonManager.getParticData(String, String, String, AclPolicy)
	4
	4,817 (6.7%)
	0 (0.0%)

	com.netsis.acords.server
	EJSRemoteStatelessServerProxyCMP_5541de04.getParticipants(String, String, String, AclPolicy, SessionTrackerData)
	4
	4,817 (6.7%)
	0 (0.0%)

	com.netsis.acords.server.business.person
	_PersonManager_Stub.getParticData(String, String, String, AclPolicy)
	4
	4,817 (6.7%)
	0 (0.0%)

	com.netsis.acords.server
	RMIServlet.getParticipants(AppellateCaseData)
	2
	4,787 (6.7%)
	0 (0.0%)

	com.netsis.acords.server.business.person
	PersonManagerBean.getParticData(String, String, String, AclPolicy)
	4
	3,906 (5.4%)
	240 (0.3%)

	com.netsis.acords.server.business.person
	PersonManager.getParticData(String, String, String, AclPolicy)
	4
	3,906 (5.4%)
	0 (0.0%)

	com.netsis.acords.server.business.person
	EJSRemoteStatelessPersonManager_d6fd582a.getParticData(String, String, String, AclPolicy)
	4
	3,906 (5.4%)
	0 (0.0%)

	com.ibm.ejs.container
	EJSHome.createWrapper(BeanId)
	82
	3,805 (5.3%)
	3,805 (5.3%)

	com.netsis.acords.server
	ServerProxyCMP.getAppellateCaseData(CaseID, String, AclPolicy, SessionTrackerData)
	12
	3,805 (5.3%)
	0 (0.0%)

	com.netsis.acords.server
	ServerProxyCMPBean.getAppellateCaseData(CaseID, String, AclPolicy, SessionTrackerData)
	6
	3,655 (5.1%)
	0 (0.0%)

	com.netsis.acords.server
	EJSRemoteStatelessServerProxyCMP_5541de04.getAppellateCaseData(CaseID, String, AclPolicy, SessionTrackerData)
	6
	3,655 (5.1%)
	0 (0.0%)

	com.netsis.acords.server.business.acordscase
	CaseManager.getAppellateCase(String, String, AclPolicy)
	6
	3,385 (4.7%)
	0 (0.0%)

	com.netsis.acords.server.business.acordscase
	_CaseManager_Stub.getAppellateCase(String, String, AclPolicy)
	6
	3,385 (4.7%)
	0 (0.0%)

	com.netsis.acords.server
	RMIServlet.getAppellateCaseData(CaseID, String)
	4
	3,345 (4.7%)
	0 (0.0%)

	javax.rmi.CORBA
	Util.copyObject(Object, ORB)
	716
	3,285 (4.6%)
	3,285 (4.6%)

	com.netsis.acords.server.business.acordscase
	CaseManager.getAppellateCase(String, String, AclPolicy)
	6
	3,044 (4.2%)
	0 (0.0%)

	com.netsis.acords.server.business.acordscase
	EJSRemoteStatelessCaseManager_e63bd8ca.getAppellateCase(String, String, AclPolicy)
	6
	3,044 (4.2%)
	0 (0.0%)

	com.netsis.acords.server.business.acordscase
	CaseManagerBean.getAppellateCase(String, String, AclPolicy)
	12
	3,014 (4.2%)
	40 (0.1%)

	com.netsis.acords.server
	BCBean.authenticate(String, String, String)
	1
	2,383 (3.3%)
	0 (0.0%)

	com.netsis.acords.server
	ServerProxyCMPHome.create()
	72
	1,682 (2.3%)
	0 (0.0%)

	com.netsis.acords.server
	ServerProxyCMP.createSecurityContext(UserData)
	4
	1,682 (2.3%)
	0 (0.0%)

	com.netsis.acords.server
	EJSRemoteStatelessServerProxyCMPHome_5541de04.create()
	36
	1,672 (2.3%)
	0 (0.0%)

	com.netsis.acords.server
	EJSStatelessServerProxyCMPHomeBean_5541de04.create()
	36
	1,642 (2.3%)
	0 (0.0%)

	java.sql
	PreparedStatement.executeQuery()
	1,919
	1,532 (2.1%)
	1,532 (2.1%)

	com.netsis.acords.server
	RemoteHttpServlet.init(ServletConfig)
	1
	1,392 (1.9%)
	10 (0.0%)

	com.netsis.acords.server
	RemoteHttpServlet.bind()
	1
	1,382 (1.9%)
	310 (0.4%)

	com.netsis.acords.server
	BCBean.getSecurityPolicy(UserData)
	1
	1,192 (1.7%)
	0 (0.0%)

	com.netsis.util
	Debug.println(String)
	3,313
	1,092 (1.5%)
	80 (0.1%)

	com.netsis.acords.server.business.trialcase
	TrialCaseManager.getTrialCaseData(byte[])
	24
	1,062 (1.5%)
	0 (0.0%)

	com.netsis.acords.server
	ServerProxyCMPBean.createSecurityContext(UserData)
	2
	1,062 (1.5%)
	0 (0.0%)

	com.netsis.acords.server
	EJSRemoteStatelessServerProxyCMP_5541de04.createSecurityContext(UserData)
	2
	1,062 (1.5%)
	0 (0.0%)

	Package
	Name
	Calls
	Cumulative Time
	Method Time

	com.ibm.ejs.container
	EJSHome.createWrapper(BeanId)
	82
	3,805 (5.3%)
	3,805 (5.3%)

	javax.rmi.CORBA
	Util.copyObject(Object, ORB)
	716
	3,285 (4.6%)
	3,285 (4.6%)

	java.sql
	PreparedStatement.executeQuery()
	1,919
	1,532 (2.1%)
	1,532 (2.1%)

	java.rmi.server
	UnicastRemoteObject.<init>()
	2
	871 (1.2%)
	831 (1.2%)

	javax.rmi.CORBA
	Util.copyObjects(Object[], ORB)
	100
	711 (1.0%)
	711 (1.0%)

	java.io
	PrintStream.println(String)
	3,427
	661 (0.9%)
	661 (0.9%)

	com.ibm.websphere.cpi
	PersisterHome.activateBean(Object)
	62
	681 (0.9%)
	491 (0.7%)

	java.sql
	PreparedStatement.close()
	1,764
	421 (0.6%)
	421 (0.6%)

	com.ibm.ejs.persistence
	EJSJDBCFinder.nextElement()
	56
	441 (0.6%)
	411 (0.6%)

	com.ibm.ejs.container
	EJSContainer.preInvoke(EJSWrapper, int, EJSDeployedSupport)
	737
	621 (0.9%)
	371 (0.5%)

	com.ibm.ejs.container
	EJSHome.getEnumeration(Finder)
	66
	371 (0.5%)
	351 (0.5%)

	java.sql
	ResultSet.getString(String)
	14,986
	381 (0.5%)
	340 (0.5%)

Analysis

Many of the worst performing methods are unnecessary in-container rmi calls and should be optimized out. Should determine why createWrapper is performing badly (is this a symptom of RMI?).

ManageCase
	Package
	Name
	Calls
	Cumulative Time
	Method Time

	com.netsis.acords.security
	ResourcePermission.equals(Object)
	15,947
	60 (0.5%)
	30 (0.2%)

	com.epicedge.security.acl
	AclPermission.equals(Object)
	15,947
	30 (0.2%)
	30 (0.2%)

	com.netsis.util
	Debug.println(String)
	5,518
	751 (5.8%)
	30 (0.2%)

	com.netsis.util
	Debug.currentTime()
	5,518
	260 (2.0%)
	10 (0.1%)

	com.epicedge.security.acl
	PermissionCollection.addPermission(Permission)
	2,754
	70 (0.5%)
	20 (0.2%)

	com.netsis.acords.security
	ResourcePermission.toString()
	2,754
	50 (0.4%)
	20 (0.2%)

	com.epicedge.security.acl
	AclPermission.toString()
	2,754
	0 (0.0%)
	0 (0.0%)

	com.netsis.acords.server.validation
	DataPurifier.getPropertyPurifier(String, Class)
	2,737
	60 (0.5%)
	50 (0.4%)

	javax.rmi.CORBA
	Util.isLocal(Stub)
	2,490
	20 (0.2%)
	20 (0.2%)

	com.ibm.vap.converters
	VapTrimStringConverter.singleton()
	2,469
	0 (0.0%)
	0 (0.0%)

	com.ibm.ejs.container
	EJSContainer.preInvoke(EJSWrapper, int, EJSDeployedSupport)
	2,189
	1,202 (9.3%)
	731 (5.7%)

	com.ibm.ejs.container
	EJSContainer.postInvoke(EJSWrapper, int, EJSDeployedSupport)
	2,189
	851 (6.6%)
	791 (6.1%)

	com.ibm.ejs.container
	EJSContainer.getEJSDeployedSupport(EJSWrapperBase)
	2,189
	40 (0.3%)
	40 (0.3%)

	com.ibm.ejs.container
	EJSContainer.putEJSDeployedSupport(EJSDeployedSupport)
	2,189
	50 (0.4%)
	50 (0.4%)

	com.netsis.acords.security
	ResourcePermission.<init>(String, String, String)
	2,176
	30 (0.2%)
	20 (0.2%)

	com.epicedge.security.acl
	AclPermission.<init>(String, String)
	2,176
	10 (0.1%)
	10 (0.1%)

	javax.rmi.CORBA
	Util.copyObject(Object, ORB)
	2,165
	1,963 (15.2%)
	1,963 (15.2%)

	com.ibm.vap.converters
	VapTrimStringConverter.objectFrom(Object)
	1,994
	0 (0.0%)
	0 (0.0%)

	com.netsis.acords.server.db.rlx
	RlxKey.equals(Object)
	1,976
	10 (0.1%)
	10 (0.1%)

	com.netsis.util.validation
	Validator.isValid(Object)
	1,350
	50 (0.4%)
	0 (0.0%)

	com.netsis.acords.security
	SecurityContext.updateSplitResource(ResourcePermission)
	1,107
	60 (0.5%)
	0 (0.0%)

	com.netsis.util
	Debug.getDebug()
	1,099
	0 (0.0%)
	0 (0.0%)

	com.netsis.acords.security
	ResourcePermission.getType()
	1,069
	0 (0.0%)
	0 (0.0%)

	Package
	Name
	Calls
	Cumulative Time
	Method Time

	javax.rmi.CORBA
	Util.copyObject(Object, ORB)
	2,165
	1,963 (15.2%)
	1,963 (15.2%)

	java.sql
	PreparedStatement.executeQuery()
	1,003
	941 (7.3%)
	941 (7.3%)

	com.ibm.ejs.container
	EJSContainer.postInvoke(EJSWrapper, int, EJSDeployedSupport)
	2,189
	851 (6.6%)
	791 (6.1%)

	com.ibm.ejs.container
	EJSContainer.preInvoke(EJSWrapper, int, EJSDeployedSupport)
	2,189
	1,202 (9.3%)
	731 (5.7%)

	javax.rmi.CORBA
	Util.copyObjects(Object[], ORB)
	326
	681 (5.3%)
	681 (5.3%)

	com.ibm.ejs.container
	EJSHome.getEnumeration(Finder)
	164
	651 (5.0%)
	631 (4.9%)

	java.io
	PrintStream.println(String)
	6,208
	451 (3.5%)
	451 (3.5%)

	java.lang.reflect
	Method.invoke(Object, Object[])
	1,503
	441 (3.4%)
	431 (3.3%)

	com.ibm.ejs.container
	EJSDeployedSupport.setUncheckedException(Exception)
	5
	381 (2.9%)
	381 (2.9%)

	com.ibm.ejs.container
	EJSHome.createWrapper(BeanId)
	328
	320 (2.5%)
	320 (2.5%)

	javax.ejb
	EJBObject.remove()
	301
	290 (2.2%)
	280 (2.2%)

	com.ibm.ejs.container
	EJSHome.postCreate(BeanO, Object, boolean)
	50
	240 (1.9%)
	240 (1.9%)

	java.sql
	ResultSet.next()
	3,075
	180 (1.4%)
	180 (1.4%)

	com.ibm.websphere.cpi
	PersisterHome.activateBean(Object)
	167
	601 (4.7%)
	160 (1.2%)

	javax.sql
	DataSource.getConnection(String, String)
	532
	150 (1.2%)
	150 (1.2%)

	java.sql
	Connection.prepareStatement(String)
	992
	140 (1.1%)
	140 (1.1%)

	java.util
	Calendar.getInstance()
	6,071
	130 (1.0%)
	130 (1.0%)

	java.text
	DateFormat.format(Date)
	5,519
	130 (1.0%)
	130 (1.0%)

Method Detail: javax.rmi.CORBA.Util.copyObject(Object, org.omg.CORBA.ORB)

Method Detail - Parents

	Calls
	Name
	Cumulative Time
	Method Time

	8
	_CalendarManager_Stub.getHolidays(Date)
	451 (3.5%)
	451 (3.5%)

	51
	_RlxHome_Stub.findByTBLToken(byte[], String, String)
	260 (2.0%)
	260 (2.0%)

	18
	_ServerProxyCMP_Stub.createSecurityContext(UserData)
	100 (0.8%)
	100 (0.8%)

	18
	_SecurityManager_Stub.createSecurityContext(UserData)
	100 (0.8%)
	100 (0.8%)

	8
	_ServerProxyCMP_Stub.getHolidays(Date)
	70 (0.5%)
	70 (0.5%)

	48
	_TrialCaseManager_Stub.getTrialCaseData(byte[])
	70 (0.5%)
	70 (0.5%)

	56
	_TrialCaseInfo_Stub.getResolutionDate()
	70 (0.5%)
	70 (0.5%)

	8
	_PNDHome_Stub.findByPrimaryKey(PNDKey)
	60 (0.5%)
	60 (0.5%)

Method Detail - Method

	Calls
	Name
	Cumulative Time
	Method Time

	2,165
	Util.copyObject(Object, ORB)
	1,963 (15.2%)
	1,963 (15.2%)

Analysis

Debug code is performing badly. Should wrap debug statements with assertions which can be disabled at runtime.

RMI and EJSContainer performing badly as above.

ConsolidateCases

	Package
	Name
	Calls
	Cumulative Time
	Method Time

	com.ibm.ejs.container
	EJSHome.createWrapper(BeanId)
	123
	3,836 (25.8%)
	3,826 (25.7%)

	javax.rmi.CORBA
	Util.copyObject(Object, ORB)
	904
	2,093 (14.1%)
	2,093 (14.1%)

	java.rmi.server
	UnicastRemoteObject.<init>()
	2
	921 (6.2%)
	871 (5.9%)

	com.ibm.ejs.container
	EJSHome.postCreate(BeanO, Object, boolean)
	30
	571 (3.8%)
	571 (3.8%)

	com.ibm.ejs.persistence
	EJSJDBCFinder.nextElement()
	67
	601 (4.0%)
	481 (3.2%)

	com.ibm.ejs.container
	EJSContainer.preInvoke(EJSWrapper, int, EJSDeployedSupport)
	855
	811 (5.5%)
	461 (3.1%)

	java.io
	PrintStream.println(String)
	1,199
	451 (3.0%)
	451 (3.0%)

	com.ibm.websphere.cpi
	PersisterHome.activateBean(Object)
	104
	821 (5.5%)
	451 (3.0%)

	javax.rmi.CORBA
	Util.copyObjects(Object[], ORB)
	127
	441 (3.0%)
	441 (3.0%)

	java.sql
	PreparedStatement.executeQuery()
	381
	371 (2.5%)
	371 (2.5%)

	com.netsis.acords.server
	RemoteHttpServlet.bind()
	1
	1,452 (9.8%)
	300 (2.0%)

	java.sql
	ResultSet.next()
	1,321
	270 (1.8%)
	270 (1.8%)

	com.ibm.ejs.container
	EJSHome.getEnumeration(Finder)
	40
	230 (1.5%)
	220 (1.5%)

	com.netsis.acords.server.db.usr
	EJSJDBCPersisterCMPUSRBean_80993393.findByUserID(String)
	2
	381 (2.6%)
	220 (1.5%)

	com.ibm.ejs.container
	EJSContainer.postInvoke(EJSWrapper, int, EJSDeployedSupport)
	855
	240 (1.6%)
	200 (1.3%)

	java.sql
	ResultSet.getString(String)
	7,254
	180 (1.2%)
	140 (0.9%)

Analysis

RMI and EJSContainer.createWrapper performing badly as above.

Purify
A series of tests were run using Rational Purify. These results represent a broad test of many areas of the application.
Results

	Class
	Method
	Calls
	Method time
	M+D time
	M time (% of Focus)
	M+D time (% of Focus)
	Avg M time
	Min M time
	Max M time
	Source File

	javax/rmi/CORBA/Util
	Util.loadClass
	366
	18,968.36
	29,423.12
	16.60
	25.74
	51.83
	0.00
	2,764.50
	(None)

	javax/rmi/CORBA/Util
	Util.copyObject
	2,204
	16,926.33
	17,102.25
	14.81
	14.96
	7.68
	0.00
	1,925.82
	(None)

	javax/rmi/CORBA/Util
	Util.copyObjects
	341
	12,460.15
	12,460.35
	10.90
	10.90
	36.54
	0.00
	248.49
	(None)

	com/netsis/acords/server/RemoteHttpServlet
	RemoteHttpServlet.bind
	1
	4,691.93
	8,751.67
	4.10
	7.66
	4,691.93
	4,691.93
	4,691.93
	RemoteHttpServlet.java

	com/netsis/acords/server/RMIServlet
	server.RMIServlet
	5
	3,825.59
	3,993.27
	3.35
	3.49
	765.12
	0.87
	3,820.76
	RMIServlet.java

	com/netsis/acords/server/cache/StaticDataHolder
	StaticDataHolder.resolveCategory
	469
	3,314.98
	3,337.08
	2.90
	2.92
	7.07
	0.00
	854.20
	StaticDataHolder.java

	com/netsis/acords/server/cache/OralArgDurationHolder
	OralArgDurationHolder.loadData
	1
	3,222.02
	3,226.05
	2.82
	2.82
	3,222.02
	3,222.02
	3,222.02
	OralArgDurationHolder.java

	com/netsis/acords/server/cache/FilingActionHolder
	FilingActionHolder.loadData
	296
	3,028.66
	3,219.50
	2.65
	2.82
	10.23
	0.96
	296.97
	FilingActionHolder.java

	javax/rmi/PortableRemoteObject
	PortableRemoteObject.exportObject
	161
	2,476.55
	30,283.21
	2.17
	26.49
	15.38
	0.00
	279.88
	(None)

	com/netsis/acords/server/business/person/PersonManagerBean
	PersonManagerBean.getEventParticResultData
	8
	1,641.63
	2,442.13
	1.44
	2.14
	205.20
	112.20
	664.56
	PersonManagerBean.java

	com/netsis/acords/server/cache/DataHolder
	DataHolder.isKey
	3,273
	1,574.63
	1,574.63
	1.38
	1.38
	0.48
	0.00
	19.60
	DataHolder.java

	com/netsis/acords/server/db/scr/EJSJDBCPersisterCMPScreenBean_fcb3cdb7
	EJSJDBCPersisterCMPScreenBean_fcb3cdb7.findByPrimary...
	1
	1,484.88
	1,509.97
	1.30
	1.32
	1,484.88
	1,484.88
	1,484.88
	(None)

	com/netsis/acords/server/security/Search
	Search.initContext
	4
	1,370.60
	1,370.61
	1.20
	1.20
	342.65
	0.00
	1,354.80
	Search.java

	com/netsis/acords/server/db/paa/_PAAHome_Stub
	_PAAHome_Stub.findLatestAssignee
	18
	1,102.67
	2,916.10
	0.96
	2.55
	61.26
	0.00
	1,091.87
	_PAAHome_Stub.java

	com/netsis/acords/server/business/acordscase/CaseManagerBean
	CaseManagerBean.getHearingDate
	36
	935.86
	971.50
	0.82
	0.85
	26.00
	3.85
	637.24
	CaseManagerBean.java

	com/netsis/acords/server/db/acordscase/EJSJDBCPersisterCMPCaseBean_07053984
	EJSJDBCPersisterCMPCaseBean_07053984.load
	77
	885.02
	1,077.78
	0.77
	0.94
	11.49
	0.00
	23.23
	(None)

	gov/wa/courts/common/UnqualifiedConnectionDelegate
	UnqualifiedConnectionDelegate.prepareStatement
	948
	884.40
	887.38
	0.77
	0.78
	0.93
	0.00
	37.66
	UnqualifiedConnectionDelegate.java

	com/netsis/acords/server/db/court/CourtBean
	CourtBean.getNameFromID
	70
	739.78
	832.64
	0.65
	0.73
	10.57
	3.65
	23.04
	CourtBean.java

	com/netsis/acords/server/db/usr/EJSJDBCPersisterCMPUSRBean_80993393
	EJSJDBCPersisterCMPUSRBean_80993393.findByUserID
	4
	723.87
	3,566.86
	0.63
	3.12
	180.97
	3.88
	689.60
	(None)

	com/netsis/acords/server/db/pnd/EJSCMPPNDHomeBean_f0f49a25
	EJSCMPPNDHomeBean_f0f49a25.postCreateWrapper
	2
	718.55
	789.96
	0.63
	0.69
	359.27
	1.85
	716.70
	(None)

	com/netsis/acords/server/db/AcordsDatabaseMgmr
	AcordsDatabaseMgmr.getConnection
	634
	698.81
	764.34
	0.61
	0.67
	1.10
	0.00
	84.09
	AcordsDatabaseMgmr.java

	com/netsis/acords/server/db/events/EventsInfoBean
	EventsInfoBean.getFilingInfo
	3
	651.48
	6,929.70
	0.57
	6.06
	217.16
	55.20
	442.81
	EventsInfoBean.java

	com/netsis/acords/server/business/events/EventManagerBean
	EventManagerBean.getManageEventResultData
	8
	609.99
	638.15
	0.53
	0.56
	76.25
	8.36
	531.42
	EventManagerBean.java

	com/netsis/acords/server/cache/FilingTypeWithShortDescHolder
	FilingTypeWithShortDescHolder.loadData
	23
	587.07
	824.99
	0.51
	0.72
	25.52
	5.67
	105.63
	FilingTypeWithShortDescHolder.java

	com/netsis/acords/server/db/cmt/EJSCMPCommentTitleHomeBean_00650e9d
	EJSCMPCommentTitleHomeBean_00650e9d.findByToken
	53
	581.00
	1,033.84
	0.51
	0.90
	10.96
	0.00
	481.47
	(None)

	com/netsis/acords/server/_ServerProxyCMP_Stub
	_ServerProxyCMP_Stub.remove
	216
	565.74
	571.45
	0.49
	0.50
	2.62
	0.00
	249.00
	_ServerProxyCMP_Stub.java

	com/netsis/acords/server/util/Utility
	Utility.sqlDtToUtilDt
	1,756
	514.50
	836.31
	0.45
	0.73
	0.29
	0.00
	38.14
	Utility.java

	com/netsis/util/DataTypeConvertor
	DataTypeConvertor.toHexString
	1,912
	492.27
	492.27
	0.43
	0.43
	0.26
	0.00
	28.44
	DataTypeConvertor.java

	com/netsis/acords/server/ServerProxyCMPBean
	ServerProxyCMPBean.authenticate
	4
	462.34
	7,955.54
	0.40
	6.96
	115.59
	1.02
	457.15
	ServerProxyCMPBean.java

Analysis

These results are consistent with JProbe. Significant time is expended in RMI code, and executing database queries.
Summary of Recommendations

We recommend considering the following changes for future sprints:
Change ACORDS and CAPS isolation levels to READ_COMMITTED (Cursor Stability)
Potential: Medium. Should reduce database lock contention.

Risk: Medium. Bugs will be subtle and difficult to reproduce.
Effort: Medium. Easy development effort, difficult to test.
Change ACORDS and CAPS to use Optimistic Locking

Potential: Medium. Could reduce deadlocks and improve query throughput.

Risk: Medium. Bugs will be subtle and difficult to reproduce.

Effort: Medium. Easy development effort, difficult to test.

Try using Commit Option ‘B’, Activate at = Once and Load at = Transaction.

Potential: Medium. Could reduce number of database queries.
Risk: Medium.

Effort: High.

Tune the WebSphere Bean Cache.
Potential: Low/Medium. Could reduce the number of database queries.
Risk: Low.

Effort: Low. Determining the appropriate setting.
Try enabling App Servers/ORB Service/Pass By Reference to change to Call-By-Reference and eliminate internal RMI calls

Potential: High. If it works, it could measurably reduce server load and individual response times.
Risk: Low/Medium. Should be low risk, but bad coding practices could cause strange results.
Effort: Low.

If above fails, convert to local interfaces.

Potential: High. Would reduce server load and individual response times.
Risk: High. Involves changing hundreds or thousand of source files and converting to EJB2.0.
Effort: High.

Optimize PersonManagerBean.getAttorneys() in ACORDS to speed up Manage Event.

Potential: Medium (localized)
Risk: low.

Effort: low.

Prevent logging from getting called when not in use. Wrap log statements in assertions.
Potential: Low/Medium.

Risk: Medium.

Effort: Medium.
Determine why com.ibm.ejs.container.EJSHome.createWrapper() performs so badly and try to fix it.

Potential: Medium. It’s a performance drag, but is likely unavoidable
Risk: Low.

Effort: High.

Work with the DBAs to determine if the Prepared Statement cache is sized appropriately.
Potential: Medium. Could reduce the amount of work the database does to re-prepare statements.
Risk: Low
Effort: Low/Medium.
Determine how to address bandwidth constraints at Division 2.
Potential: Medium.

Risk: Medium.

Effort: Medium.

Install Wiley toolset, configure it, and run some performance tests.

Potential: Medium.

Risk: Low.

Effort: Medium/High.

Mark all read only methods as such (IBM cpmOPT can determine this conclusively).

Potential: Increase performance every time data is accessed through and Entity Bean. Reduced database access and deadlock potential. Reduced server load. May not be noticeable to individual user.

Risk: Low

Effort: 1 Developer, 1 week per application

Make sure connection and thread pools are large enough

Potential: Medium. If pools are too small, clients are waiting for resources to become available, and servers are under utilized.

Risk: Low

Effort: Medium. Depends on having WebSphere data available to determine usage. 1 developer, 2 weeks.

9672

2066

WebSphere

DB2

Natural Cobol / Compiled

SCOMIS

DISCIS

DB2P

PRDDISC

Production

DB2D

devdis6

devdpro

devdvol

Development

Test

Staging

LDAP

Production

[image: image2.png]