[image: image10.png]
Administrative Office Of The Courts

Enterprise Application Architecture
Design Guidelines
Version 1.0
Revision History

	Date
	Version
	Description
	Author

	04/03/2003
	1.0
	Initial draft
	Scott Came

	
	
	
	

	
	
	
	

	
	
	
	

Table of Contents

31.
Introduction

1.1
Purpose
3
1.2
Scope
3
1.3
Definitions, Acronyms, and Abbreviations
3
1.4
References
3
2.
Architectural Design Guidelines
3
2.1
Use Case View Design Guidelines
3
2.1.1
References
3
2.1.2
Definitions
3
2.1.3
Use Case Guidelines
3
2.1.4
Use Case Instance Step Guidelines
3
2.2
Logical View Design Guidelines
3
2.2.1
References
3
2.2.2
Definitions
3
2.2.3
Guidelines
3
2.3
Implementation View Guidelines
3
2.3.1
Principles
3
2.3.2
Development Environment Structure
3
2.3.3
Ant Build File Guidelines
3
2.3.4
External (non Java-standard) APIs
3
2.3.5
Coding Standards
3
2.4
Process View Guidelines
3
2.5
Security View Guidelines
3
2.6
Deployment View Guidelines
3
2.7
Traceability Guidelines
3
3.
Toolsets
3
4.
Database Design Guidelines
3

Design Guidelines
1. Introduction

1.1 Purpose

The purpose of this document is to communicate the design and implementation standards, conventions and idioms to be used in the design of the system.

1.2 Scope

This document includes the following:
· Guidelines for architectural descriptions
· Definition of a standard development environment structure

· Coding standards for Java and XML development

· List of external APIs, their purposes, and supported implementations

· Definition of standard toolsets used by design and implementation roles

· Pointers to existing AOC Database Design Guidelines and standards

1.3 Definitions, Acronyms, and Abbreviations

These items need to be handled per our overall glossary strategy…
EAA: Enterprise Application Architecture

EAB: Enterprise Architecture Board

RMP: Requirements Management Plan

SAD: Software Architecture Document
1.4 References

AOC Enterprise Application Architecture (EAA) Software Architecture Document (SAD)

AOC EAA Requirements Management Plan (RMP)
These two RUP artifacts are the final word on the AOC enterprise architecture and required artifacts, respectively. This document is orthogonal to both the SAD and RMP; this document attempts to define what “acceptable” artifacts are, not which artifacts are required or how the architecture is structured.
Cockburn, Alistair. Writing Effective Use Cases, Addison-Wesley, 2001.

Adolph, Steve, and Bramble, Paul. Patterns for Effective Use Cases, Addison-Wesley, 2003.

Fowler, Martin. UML Distilled, Addison-Wesley, 1997.

Kruchten, Phillipe. The Rational Unified Process: An Introduction, Addison-Wesley, 2000.

Ambler, Scott. Coding Standards for Java. Online at http://www.AmbySoft.com/javaCodingStandards.pdf.

Ambler, Scott. Elements of UML Style. Online at http://www.ambysoft.com/elementsUMLStyle.html.
These books and online documents serve as background for the guidelines that appear in this document.

2. Architectural Design Guidelines

This section documents architectural design guidelines for each of the major architectural views. These guidelines are aimed at ensuring that a project’s Software Architecture Document (SAD) communicates appropriate information in an appropriate way. The guidelines should also be used to guide and constrain the building of each project’s main design model.

2.1 Use Case View Design Guidelines

2.1.1 References

In this section, the following abbreviations are used to identify the source of the various guidelines: RUP UCG=Rational Unified Process Use Case Guideline; WEUC=Cockburn, Writing Effective Use Cases; PEUC=Adolph/Bramble, Patterns for Effective Use Cases.
2.1.2 Definitions

The Use Case View of the architecture is the set of all use cases that define the behavioral requirements of the system being built.

The official RUP definition of a use case is as follows (RUP UCG):

A use-case instance is a sequence of actions a system performs that yields an observable result of value to a particular actor. A use case defines a set of use-case instances.

The use case specification artifact adopted by AOC for the SDP amends this definition as follows (WEUC):

Additionally, a use case documents the relevant interests of all system stakeholders, and verifies that these interests are protected and satisfied.
2.1.3 Use Case Guidelines

A use case is associated with an actor; if two actors could run the use case, their commonality needs to be abstracted into a common base actor. A use case is designed to provide benefit to one type of stakeholder. This stakeholder needs a name. (RUP UCG)
A use case must clearly achieve some goal of the actor. A use case is fundamentally a sequence of actions, in which the actor does something, and the system responds, and so on, until some result of value to the actor is obtained. (RUP UCG) This same concept is illustrated in PEUC in the pattern “User Valued Transactions.”
A written use case must include a flow of events, and may include one or many alternate flows of events. The flow of events should be written as a sequence, or list. Each action (or event) in the list should have either the actor or the system as the subject, and the action performed as the verb. The next action in the list should describe the actor’s or system’s response to the previous action. It is helpful to view the flow of events like two soccer players moving the ball up the field by passing: one player has the ball, and does something, then passes it to the other player, who does something and passes it back, and so on. (RUP UCG)
It must be clear how the use case starts and ends. (RUP UCG)
The use case should describe only the events that belong to that use case, and not what happens in other use cases or outside of the system. (RUP UCG)

The use case’s flow of events should list between 3-9 steps. (WEUC)

The use case’s name should consist of an active verb phrase that clearly represents the goal of the actor. (PEUC)

The use case should address one complete and well-defined goal of a single actor. (PEUC)

The use case description should contain pointers to necessary “adornments” so that the flow of events remains succinct and clear. Data structure descriptions (e.g., what fields are contained in an address) and relevant nonfunctional requirements are common examples of adornments. The SDP use case template has a section titled “special requirements” that can be used to list adornments. (PEUC)
2.1.4 Use Case Instance Step Guidelines

Each instance step must describe what data is exchanged between the actor and the use case. (RUP UCG)

Each instance step should not describe the details of the user interface. (RUP UCG)

Avoid vague terminology such as "for example", "etc. " and "information". (RUP UCG)

Each use case instance step must be a single sentence. (WEUC)
The subject of the sentence is either the actor or the system; the verb of the sentence is the action being performed. (WEUC)

Each use case instance step must be written from a “birds-eye” view; that is, not from the perspective of either the system or the actor. (WEUC)

Each use case instance step must show forward progress towards achieving the actor’s goal. (WEUC)

Each use case instance step should show the actor’s intent, not user interface gestures. (WEUC)

Do not write conditional use case instance steps. A use case instance step should not start with the word “if”. Whenever a decision point is reached in the flow of events, assume the most likely or beneficial outcome in the main flow, and write subsequent steps as if that outcome occurs. Handle the alternative outcomes in an alternative flow. (WEUC)

2.2 Logical View Design Guidelines
2.2.1 References

The guidelines in this section were synthesized from RUP, and the Kruchten and Fowler books. This section also refers to the AOC EAA Software Architecture Document (SAD).
2.2.2 Definitions

The Logical View of the architecture addresses the functional requirements of the system—that is, what it should do for its end users. It abstracts the design model, and identifies major design packages and classes.

2.2.3 Guidelines

The purpose of the Logical View guidelines is to ensure that the artifacts produced within the design model communicate the proper information at an appropriate level of detail.
The goals of the Logical View design guidelines are twofold:

· The design model artifacts should be robust and detailed enough to minimize discovery of both new requirements and design flaws during the construction phase, and
· The design model artifacts should ensure that the software will be developed within the enterprise architecture.
Note that it is not necessary—or even desirable—for each and every implementation class to be documented in the design. Including every implementation class in the design would produce an over-cluttered design model that would be difficult to use. Similarly, it is not desirable to document every interaction between classes in a sequence diagram. The intent of the design model is to communicate the salient, architecturally significant parts of the design. Work on the design model should stop when the goals outlined above are met.

RUP offers the following general guidelines for the design model:

· It satisfies the system requirements.
· It is resistant to changes in the implementation environment.
· It is easy to maintain in relation to other possible object models and to system implementation.
· It is clear how to implement.
· It does not include information that is best documented in program code.
The rest of this section defines the guidelines for each layer in the enterprise architecture.

2.2.3.1 Presentation Layer Guidelines

The presentation layer consists of three types of component: models, views, and controllers. The following guidelines apply to each component type, for designing the implementation of the rich Java UI components only. Since the batch, web service, and reporting components (as documented in the EAA SAD) are simply adapters of the business services in the domain layer, the design of those services will be sufficient (no separate presentation layer design is necessary for these presentation components.)
Because of the presentation layer architecture defined in the EAA SAD, it is crucial that the design model for the presentation layer be clear whether a use case is a “data entry” use case or a “view only” use case.

In considering the applicability of these guidelines, note that if a particular MVC triad for a particular screen or functional area is architecturally the same as another area, the artifacts required by the guidelines can be produced for one area, and a simple notation made of the applicability to the similar area.

Model Component Guidelines
A class diagram is required to communicate the static structure of the model components. Since typically a model component will adapt a collection of Data Transfer Objects for use as the model behind a particular Swing component, the class diagram should show the model class as well as the DTO class or classes that it adapts.
View Component Guidelines
View components will generally consist of a JPanel class that contains instances of other panels and/or individual Swing components. View component classes will be authored completely within a GUI builder; their source code will not be edited directly. The static class structure of view components is uninteresting and contributes nothing to the design model. Therefore, no UML diagrams are necessary for view components.

AOC has established User Interface Design Standards, which are incorporated here by reference. These standards apply to the look-and-feel of the view components.

Controller Component Guidelines
A class diagram is required to communicate the static structure of controller components. Since controllers manipulate the state of the models, the class diagram should show relationships between each controller and the model(s) it manipulates. A sequence diagram is also required to show the interaction between the controller, model, and domain layer.
Note that each Swing view component contains a “controller” that responds to GUI gestures on that component by manipulating the model via the Swing model interface. (This is different from the controller authored specifically for the application, that manages changes to the model that originate in the domain layer.) It is not necessary to show the embedded Swing controller on a class diagram (since the controller is inseparable from the view—they are both contained within the Swing component), nor is it necessary to diagram the relevant object interactions via a sequence diagram.

2.2.3.2 Domain Layer Guidelines

The domain layer consists of two sub-layers: a service layer, and a domain model. The following guidelines apply to each sub-layer.
Service Layer Guidelines
A class diagram is required for the stateless session EJBs that constitute the public interface to the service layer. The classes on the diagram should show the public methods on the session beans, as well as the Data Transfer Object classes (which constitute the method parameters and return values of the methods on the session beans.)
At least one sequence diagram is required to show the interaction between service layer classes and the domain model. If there are service-domain interactions that are distinct from one another architecturally, then a sequence diagram is required to document each distinct type of interaction.
If implementation of a service in the service layer involves a complicated workflow, the design team should strongly consider building a state diagram to depict the changes in state of major objects during the workflow.

Domain Model Guidelines
A class diagram is required to show the design of (and relationships between) domain classes. The class diagram should show the separation of the persistent state of entity classes from the algorithmic, higher-order operations, according to the delegation strategy outlined in the EAA SAD.

The class diagram should also show relationships/dependencies between the domain model classes and Value List Handler, Data Access Object, and Active Record (Entity EJB) classes in the data source layer.
2.2.3.3 Data Source Layer Guidelines

See the Database Design Guidelines section later in this document.

2.3 Implementation View Guidelines

The implementation view of the architecture deals with the static organization of software assets in the development environment. The guidelines for the structure of the implementation view follow in this section.
Some of the guidelines presented in this section are tightly coupled with AOC Configuration Management processes and standards. Consequently, this section should be understood in the context of the Configuration Management Plan RUP artifact (which still needs to be written, by the way.)
2.3.1 Principles

The following principles govern the structure of the development environment:

· The same information should be kept in one place and one place only. No duplication of artifacts is allowed.

· All source artifacts are to be managed under ClearCase source control.

· Generated artifacts (i.e., artifacts built from source) should not be stored in source control; they should be generated as needed.

· Artifacts must be generated from source in a repeatable, automated, headless way.

· The development environment must facilitate deployment on all AOC supported platforms, ideally by accepting a single “platform” parameter to the automated build process.

· To the greatest extent possible, the development environment must be self-contained. It must be 100% self-contained with respect to libraries/APIs that the source code is dependent on. (That is, no assumptions can be made about libraries/APIs being installed on the build machine.) It must be as self-contained as possible with respect to assumptions about tools installed on the build machine. The development environment may assume that JDK 1.4.1 or above and Jakarta Ant 1.5.1 or above is installed on the build machine. It may also assume that WSAD is installed.
· A strong preference should be given to using standard Java APIs and standard Java extension APIs. Proprietary extensions to the core or extended Java APIs—even IBM proprietary extensions—should be avoided unless there is a compelling business reason to use them.

2.3.2 Development Environment Structure

Each code base will have the following directory structure; this structure will be the structure of the ClearCase VOB that the project uses to manage the source:
lib (contains libraries that are needed to compile and/or execute application; if many of them, then create a sub-directory for each API/library)

src (contains source code)

 java (contains java source code)

 gov/wa/courts/... (reflects java package structure)

 xml (contains xml source documents, like schema)

 xsl (contains xsl stylesheet source documents)

 web (contains source deployed directly in web container without compilation)

 jsp (contains java server pages)

 html (contains static html documents)

 images (contains images)

doc (contains project documentation that will be maintained in ClearCase; RequisitePro documentation will not be part of this directory structure)

build.xml (Ant build file lives in the root directory)
The following directories will be created by various Ant targets as generated artifacts get built from source. These directories and their contents will not be managed in ClearCase:

classes (contains Java class files, compiled from java source, as well as other artifacts to be deployed to the classpath (e.g., images, properties files, etc.))

dist (contains "final" artifacts, like war files, ear files, jar files)

javadoc (contains generated javadoc)

temp (a scratch directory that can be used by Ant as it wishes/needs)
2.3.3 Ant Build File Guidelines
Each code base will have a single Ant build file, called build.xml. The build file can contain any Ant targets that are convenient for the project team; however, the following targets must be present:

	Target Name
	Purpose

	clean
	Removes all generated artifacts

	make
	Compiles java sources to class files; this is the default target

	ear
	Builds J2EE EAR file(s) and client jar files for the project

	javadoc
	Builds javadoc from java source and bundles it into a WAR file

All platform or machine dependencies inherent in targets within the build file should be represented by properties listed at the top of the file. File and directory references should also be represented by properties.
Each target should be documented with a description attribute. The standard ones listed above should use the purpose as the description.

Custom Ant tasks should be avoided if at all possible. Using a custom task requires the approval of the AOC Configuration Manager and an AOC Designer.

2.3.4 External (non Java-standard) APIs

Use of APIs that are not part of the Java standard API or Java extension APIs should be avoided, with the following exceptions:
	API Name
	Purpose

	JUnit
	Unit testing Java classes and components

	log4j
	Logging

	Apache Axis
	Implementation of the client side of JAX-M and JAX-RPC SOAP web service transactions

	Websphere SOAP implementation
	Implementation of the server side of JAX-M and JAX-RPC SOAP web service transactions

	Apache FOP
	XSL-FO Engine

Using APIs that are not on this list
Usage of an API not supported by the Enterprise Application Architecture is not permitted. Therefore, if a project has a business need to use such an API, the EAA must be changed to support that API. Changes to the EAA require the approval of the Enterprise Architecture Board; proposals for changes should be submitted to the AOC Senior Designer.
Proprietary APIs developed by contractors who are retained to build a code base are considered external APIs if used in binary form; as such, their use requires the explicit approval of the EAB via the AOC Senior Designer. If used in source form, the source for the API must be incorporated into the code base, and must follow all AOC coding standards and package naming standards, and must be consistent with the EAA.

APIs supplied by IBM are considered proprietary, even if they are included with Websphere and/or development tools. Use of these APIs is prohibited; proposed exceptions require the approval of the EAB via the AOC Senior Designer. Note that IBM implementations of Java standard APIs can and should be used. Use of proprietary extensions to those APIs, if any, is prohibited.
Open Source APIs can only be considered for use in binary form. Standards for the usage of such APIs is no different than the standards for commercial proprietary APIs: their usage must be approved by the EAB, via the AOC Senior Designer.

2.3.5 Coding Standards

Development of Java source code will be according to the Java coding standards published by Scott Ambler (http://www.AmbySoft.com/javaCodingStandards.pdf), with the following clarifications/amendments:

· 2.1.1 Naming Accessor Member Functions: The Java Beans naming conventions should be followed in all cases for naming accessors and mutators.
· 2.3 Documenting Member Functions: Javadoc documentation is all that is required. All classes and public and protected methods must include javadoc comments, with meaningful entries for all tags.
· 2.4.2 Paragraph/Indent Your Code: Java source code will be indented four spaces, with actual spaces (not hard tabs.) Opening braces will appear on the line following the line opening the block.
· 3.1 Naming Fields: All primary standards in this section will be the AOC standards. The alternatives are to be ignored. In particular, fields are not to be written in Hungarian notation or with leading/trailing underscores.
· Sections 3.4.2, 3.4.3, 3.4.4, and 3.4.5 can be ignored
· 5. Standards for Parameters (Arguments) to Member Functions: All primary standards in this section will be the AOC standards. The alternatives are to be ignored.
· 6.2.1 Naming Interfaces: Interfaces should not be prefixed with “I” or postfixed with “Ifc” or “Type”
· 6.3 Standards for Packages: The package naming conventions established in the EAA Software Architecture Document should be followed for implementation packages.
· 7.2 Use import wild cards: Always import entire packages with the “*” wildcard. Do not import individual classes.
· 7.4 Writing Java Test Harnesses: superceded by the test code standards below
Standards for Unit Testing
The following standards should be followed when developing unit tests:

· All unit tests will be written to the JUnit API, version 3.8 or higher

· Each subclass of junit.framework.TestCase will have a name starting with Test

· Each package will include a test suite class named TestSuitePackage. This suite will include all of the tests in that package, plus all suites in all subpackages. Test suites will be implemented by wrapping each TestCase subclass in a suite by passing the class’ class object to the TestSuite constructor, as explained in the JUnit cookbook, available at http://www.junit.org.

Additional javadoc Standards
Each package will include a package.html document that describes the purpose of the package and the structure of its most significant classes. (package.html is a javadoc standard mechanism.)

Guidelines for Writing Platform-specific Code
Platform-specific code is code that is written to work (and only works) on a particular operating system, Java Virtual Machine version, or hardware platform. Since Java is the chosen environment for the new JIS, the need for platform-specific code should be very rare. However, it is likely that at least some functionality in the new JIS will need to be implemented in a platform-specific way.

Platform-specific code should be encapsulated behind an Abstract Factory (see GoF design patterns.) The concrete factory implementation will be created by a Factory Method (GoF) that uses the “os.name” Java system property. This factory method will be the only place in the new JIS where conditional checking of platform is allowed.
Additional General Standards
· No native code or native methods will be included in a code base without the approval of an AOC designer

· Aspects and aspect-oriented programming will not be used.

· Stored procedures will not be used without the approval of an AOC designer

· XML documents will be built using the standard Java extension class javax.xml.parsers.DocumentBuilderFactory, which provides access to a DocumentBuilder that builds DOM Documents. The nodes of the Documents are to be built using the Java DOM API (classes in package org.w3c.dom and subpackages) that is part of the core Java API.

· XML document structure will be specified with XML Schemas, according to the W3C XML Schema language, unless a national or state-level standard dictates another schema language.
· Any class that overrides the equals() method must also override the hashCode() method; equals() should test that the compared object is not null, is of the same class, and has the same hashCode() as the comparing object.

2.4 Process View Guidelines

The process view addresses the concurrent aspects of the software at runtime, including the tasks, threads, and processes, and their interactions.

It is expected that most if not all projects will not need a Process Model that differs from the one in the EAA. If a project finds it helpful to develop its own process model, the EAA process model should be used as a baseline, and major changes need to be approved by the EAB.
2.5 Security View Guidelines

TBD based on feedback from EAB on why this view exists…
2.6 Deployment View Guidelines

The deployment view addresses how the runtime components of the software are mapped to physical computing devices.

It is expected that most if not all projects will not need a Deployment Model that differs from the one in the EAA. If a project finds it helpful to develop its own deployment model, the EAA deployment model should be used as a baseline, and major changes need to be approved by the EAB.

2.7 Traceability Guidelines

The following guidelines apply to the traceability documentation to be maintained across artifacts.

· The most important traceability to be documented is a trace of use cases to test cases. Every acceptance test for a use case should be automated and headless, and written in Java using the JUnit API. Acceptance tests for the use cases should be organized into a suite that can be run within the standard development environment documented in the Implementation View Guidelines section of this document.

· When code is checked into ClearCase to fix a bug or implement an enhancement request, a trace should be documented from ClearCase to the ClearQuest object representing the bug or ER.

· It should be clear which use case(s) a particular service layer class implements. Therefore, as part of the javadoc for service layer classes, a javadoc tag will be added to the class javadoc comment that names the use case(s) it implements.

· It is not necessary or desirable to document traceability between use cases and design artifacts, nor between design artifacts and code.
3. Toolsets

This section documents the standard toolsets for each role in the development process.

Note: “Toolset” is defined in the RMP, but should be moved to one place. Is that place here? Also, the toolsets/roles listed are somewhat out of synch with the RUP disciplines. Need to think about/discuss this more…
4. Database Design Guidelines

This section needs to be filled in with input from the DBAs, SQL Group, and some of Celeste’s staff. We should consider migrating all existing database standards into RUP artifacts. (In many cases this will just be a reformatting exercise; in others, some updating and scrubbing will be necessary.)
[This section gives rules and recommendations for the database design. The following topics should be discussed:

· Mapping from persistence classes to database structures, including how to handle potential conflicts such as many-to-many associations in the design model and inheritance.

· Mapping of design class attributes to database primitive data types.

· Use of the Process View to describe the processes and inter-process communication used by the persistence mechanism.

· Use of the Deployment View to describe the physical distribution of data across nodes.

· Naming conventions for database structures; for example, tables, stored procedures, triggers, tablespaces, and so forth.][image: image1.png][image: image2][image: image3][image: image4][image: image5][image: image6][image: image7][image: image8][image: image9]
PAGE

[image: image11.png]_1075009459.bin

